Comparison of the Accuracy Between Naive Bayes Classifier and Support Vector Machine Algorithms for Sentiment Analysis in Mobile JKN Application Reviews

Authors

  • Erni Septiani Information System, Departemen of Information Technology, STMIK PPKIA Pradnya Paramita, Malang, Indonesia
  • Tubagus M. Akhriza Information System, Departemen of Information Technology, STMIK PPKIA Pradnya Paramita, Malang, Indonesia
  • Mochamad Husni Information System, Departemen of Information Technology, STMIK PPKIA Pradnya Paramita, Malang, Indonesia

DOI:

https://doi.org/10.24090/tids.v1i1.12232

Keywords:

Naïve Bayes Classifier, Support Vector Machine, Sentiment Analysis, Mobile JKN, SMOTE

Abstract

The Mobile JKN (National Health Insurance) application is a form of BPJS Health's commitment to implementing health insurance programs since 2014. The large number of reviews of the Mobile JKN application on the Google Play Store requires sentiment analysis with an algorithm that produces the best accuracy. This research compares the accuracy obtained from the Naive Bayes Classifier (NBC) and Support Vector Machine (SVM) algorithms. This algorithm is implemented directly in sentiment analysis and combined with the Synthetic Minority Over-Sampling Technique (SMOTE) technique to overcome data imbalance. The data in this research was obtained from reviews of the Mobile JKN application on the Google Play Store using the data scraping method. We use data scraping and labeling processes before performing sentiment analysis. The sentiment analysis process includes text preprocessing and processing (modeling) by dividing the data into 30%, 40%, and 50% test data, with the rest becoming training data. The results of this research showed that the algorithm with the best accuracy was the NBC algorithm using the SMOTE technique with 50% test data and the SVM algorithm without the SMOTE technique with 50% test data. Both give the same accurate results, namely 0.90 or 90%. Experiments show that the amount of test data and the application of SMOTE affect the accuracy of the two compared algorithms.

References

N. Annisa, D. S. Pradana, and W. Suharso, “Evaluasi Aplikasi Mobile Jaminan Kesehatan Nasional (JKN) di Kota Malang Ditinjau dari Aspek Usability,” J. Repos., vol. 2, no. 12, pp. 1689–1699, Dec. 2020, doi: 10.22219/repositor.v2i12.511.

M. Mauludin Rohman and S. Adinugroho, “Analisis Sentimen pada Ulasan Aplikasi Mobile JKN Menggunakan Metode Maximum Entropy dan Seleksi Fitur Gini Index Text,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 6, pp. 2646–2654, 2021, [Online]. Available: http://j-ptiik.ub.ac.id

F. M. Mochamad Tri Anjasmoros, Istiadi, “Analisis Sentimen Aplikasi Go-Jek Menggunakan Metode SVM Dan NBC (Studi Kasus: Komentar pada Play Store),” Conf. Innov. Appl. Sci. Technol. (CIASTECH 2020), vol. 3, no. Ciastech, pp. 489–498, 2020, [Online]. Available: http://publishing-widyagama.ac.id/ejournal-v2/index.php/ciastech/article/view/1905

D. Oktavia, Y. R. Ramadahan, and Minarto, “Analisis Sentimen terhadap Penerapan Sistem E-Tilang pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM),” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 1, pp. 407–417, 2023.

N. D. Saputri, K. Khalid, and D. Rolliawati, “Komparasi penerapan metode Bagging dan Adaboost pada Algoritma C4. 5 untuk prediksi Penyakit Stroke,” Sist. J. Sist. Inf., vol. 11, no. 3, pp. 567–577, 2022, [Online]. Available: http://sistemasi.ftik.unisi.ac.id

A. Muhammadin and I. A. Sobari, “Analisis Sentimen pada Ulasan Aplikasi Kredivo dengan Algoritma SVM dan NBC,” Reputasi J. Rekayasa Perangkat Lunak, vol. 2, no. 2, pp. 85–91, 2021, doi: 10.31294/reputasi.v2i2.785.

A. SAPUTRA, “Analisis Sentimen Aplikasi Investasi Reksa Dana (Bibit) Menggunakan Metode Support Vector Machine,” Yogyakarta, 2023. [Online]. Available: http://eprints.upnyk.ac.id/36621/4/2. Abstrak_123160194_Andre Saputra.pdf%0Ahttp://eprints.upnyk.ac.id/36621/3/1. Skripsi Fulltext_123160194_Andre Saputra.pdf

M. T. Nitamia and H. Februariyanti, “Analisis Sentimen Ulasan Ekpedisi J&T Expres Menggunakan Algoritma Naive Bayes,” J. Manaj. Inform. Sist. Inf., vol. 5, no. 1, pp. 20–29, 2022.

S. Hanggara, T. M. Akhriza, and M. Husni, “Aplikasi Web untuk Analisis Sentimen pada Opini Produk dengan Metode Naive Bayes Classifier,” Semin. Nas. Inov. Dan Apl. Teknol. Di Ind., vol. 4, no. 2, p. A33.1-A33.6, 2017.

H. C. S. Ningrum, “Perbandingan Metode Support Vector Machine (SVM) Linear, Radial Basis Function (RBF), dan Polinomial Kernel dalam Klasifikasi Bidang Studi Lanjut Pilihan Alumni UII,” Yogyakarta, 2018.

M. R. A. Yudianto, K. Kusrini, and H. Al Fatta, “Analisis Pengaruh Tingkat Akurasi Klasifikasi Citra Wayang dengan Algoritma Convolitional Neural Network,” JurTI) J. Teknol. Inf., vol. 4, no. 2, pp. 182–191.

Downloads

Published

2024-04-01

How to Cite

Septiani, E., Akhriza, T. M., & Husni, M. (2024). Comparison of the Accuracy Between Naive Bayes Classifier and Support Vector Machine Algorithms for Sentiment Analysis in Mobile JKN Application Reviews. Transactions on Informatics and Data Science, 1(1), 21–32. https://doi.org/10.24090/tids.v1i1.12232

Issue

Section

Articles

Categories