
Transaction on Informatics and Data Science
Vol. 1, No. 1, 2024, 11-20
ISSN: 3064-1772 (online)
DOI: https://doi.org/10.24090/tids.v1i1.12192

Copyright © 2024 The Authors, Published by Department of Informatics, UIN Saizu, Purwokerto – Indonesia
This work is licensed under Creative Commons Attribution 4.0 International.

11

Naive Bayes Classification for Software Defect Prediction

Edwin Hari Agus Prastyo*1, Muhammad Ainul Yaqin 1, Suhartono 1,

M. Faisal 1, Reza Augusta Jannatul Firdaus 2
1 Department of Informatics, Faculty of Science and Technology, Universitas Islam Negeri
Maulana Malik Ibrahim, Malang, Indonesia.

2 Department of Informatics, Faculty of Information Technology, Universitas Hasyim Asy’Ari,
Jombang, Indonesia.

Article Information

Submitted February 2, 2024
Accepted March 10, 2024

Published April 1, 2024

Abstract

Software defects are an inevitable aspect of software development, exerting substantial
influence on the reliability and performance of software applications. This research addresses
the imperative need to enhance the prediction and monitoring of software defects within the
software development domain. With a focus on system stability and the prevention of
software malfunctions, this study underscores the significance of proactive measures,
including robust software testing, routine maintenance, and continuous system monitoring.
The central challenge addressed in this research pertains to the insufficient efficiency of
predicting software defects during the development phase. To address this challenge, the
study employs the Naive Bayes classification method. Test results conducted on the complete
dataset reveal that the Naive Bayes method yields classifications with an exceptionally high
accuracy rate, reaching 98%. These findings suggest that the method holds great potential as
an effective tool for predicting and preventing software defects throughout the software
development process. Additionally, through linear regression analysis, the model exhibits an
intercept value of -0.09359968 and a coef coefficient of 0.00761893. The outcomes of this
research bear significant implications for the implementation of the Naive Bayes method in
software bug prediction analysis, particularly in the utilization of the Python programming
language with the assistance of Google Colab. The adoption of this method can play a pivotal
role in mitigating risks and elevating the overall quality of software during the developmental
stages.

Keywords: Software flaw prediction, software defect prediction, Naï ve Bayes

1. Introduction

In an era of rapidly developing technology,

software defect prediction has become a crucial

step in identifying and mitigating potential

problems in software development. One

approach that has been analyzed in depth is the

application of Naive Bayes classification to

improve software defect predictions [1].

 The main problem to be resolved in this

research is the lack of efficient predictions

related to software defects in software

development. Continuous monitoring and risk

management are important aspects of software

development and maintenance. Effective risk

management involves early identification and

* Author Correspondence: Edwin Hari Agus Prastyo: Universitas Islam Negeri Maulana Malik Ibrahim, Jalan
Gajayana No. 50 Malang 65144, Jawa Timur - Indonesia. Email: 220605220005@student.uin-malang.ac.id

analysis of risks, implementation of corrective

actions, continuous monitoring, and

reassessment [2]. This process is important for

reducing unexpected defects and system

crashes, ensuring data integrity, and improving

user experience and application reliability [3].

Continuous monitoring is critical to identifying

major vehicle defects and reducing accidents

resulting from vehicle-related impairments. [4].

It also plays an important role in improving the

safety of heavy vehicles by reducing defect-

related accidents through inspections and

maintenance programs [5].

 In the field of risk management, the use

of Bayesian Networks has been proposed to

https://doi.org/10.24090/tids.v1i1.
https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
mailto:220605220005@student.uin-malang.ac.id

Naive Bayes Classification for Software Defect Prediction

Transaction on Informatics and Data Science – Vol. 1(1), 2024 12

support decision making in various software

designs, contributing to the effective

management of technological risks in software

projects [2]. This shows the importance of

leveraging advanced techniques and

methodologies to address risks in development

and maintenance.

 The Naive Bayes classification method

has been widely used in various fields, including

software error prediction, sentiment analysis,

and disease prediction. In the field of software

error prediction, researchers have applied the

Naive Bayes classifier to predict software errors

using techniques such as sampling and feature

selection [6], integration of distribution-based

balance and ensemble bagging [7], and

comparison with other classification algorithms.

[8]. This study has demonstrated the

effectiveness of the Naive Bayes classifier in

predicting software defects. In the field of

feelings analysis, the Naive Bayes classifier has

been used to analyze people's feelings on social

media platforms such as Twitter [9]. It has been

applied to analyze sentiment during the 2020

election in the context of the COVID-19

pandemic. The results of this study demonstrate

the applicability of the Naive Bayes classifier in

sentiment analysis tasks. In addition, the Naive

Bayes classifier has also been used in disease

prediction. For example, in the healthcare field,

Naive Bayes classifiers have been used to

identify diseases such as tuberculosis [5] and

gingivitis [10]. This study highlights the accuracy

and effectiveness of the Naive Bayes classifier in

disease prediction.

 In addition, the Naive Bayes classifier has

been applied in other fields, such as predicting

student graduation [11] and detecting network

attacks [12]. This study shows the versatility of

the Naive Bayes classifier in a variety of

prediction tasks. In conclusion, Naive Bayes

classifier is a widely used method for prediction

tasks in various domains. Its effectiveness has

been demonstrated in software error prediction,

sentiment analysis, disease prediction, and other

fields.

Naive Bayes method is an attractive choice

because of its simplicity. Although the

assumption that the attributes are independent

("naive" assumption) may not always hold in

real contexts, this method often provides good

results in classification problems, including

software defect prediction. Muzaki and Witanti

[9] argue that Naive Bayes (NB) is a good for

classification. NB uses probability theory as its

theoretical basis and has a high level of speed

and accuracy when applied to large databases.

NB can determine the class of data during

classification by testing all labels on the data

using Bayes' theorem. The class that has the

highest probability value becomes the prediction

from the method.

Python programming language was chosen

as a platform for implementing the Naive Bayes

method in this research because Python

provides a variety of powerful libraries for data

analysis and machine learning. A relevant paper

reference in the context of using Python for data

analysis and machine learning is "Python for

Data Analysis" by Wes McKinney [13]. Python

also has effective visualization tools such as

Matplotlib and Seaborn to visualize data analysis

results. Python implementation involves steps

such as reading the dataset, processing the data,

training the model, and evaluating the

performance of the model. Data analysis is an

important stage in this research, and the Python

method makes it easy to read data, clean it, delete

irrelevant data, and explore data to identify

patterns or relationships between software

attributes and the presence of defects [13].

Evaluation of the performance of device defect

prediction models’ software is the final stage in

this research [14], which is suitable for

measuring classification tasks. Performance

metrics such as accuracy, precision, and recall

will be used to evaluate the model.

The evaluation results support

understanding the extent to which Naive Bayes

models are effective in predicting software

defects. Supervision-based machine learning is

used to evaluate machine learning capabilities in

Naive Bayes Classification for Software Defect Prediction

Transaction on Informatics and Data Science – Vol. 1(1), 2024 13

Device Behavior Prediction (SBP). This study

discusses Naïve Bayes (NB) classifiers. The

discussed machine learning classifiers were

applied to three different datasets obtained from

the book [15], Previous researchers have

developed and applied various bug prediction

approaches that differ in terms of accuracy,

complexity, and input data that is needed but has

not achieved the desired results [16].

Software defect prediction is important

because it allows software developers to allocate

available resources to create high-quality

software products that can help in every

company's business processes [17]. By

predicting module defects early, developers can

identify potential problems early and allocate

resources appropriately. The use of Naive Bayes

classification in software defect prediction has

been proven to be effective. In a study by

Hardoni [1] the integration of SMOTE (Synthetic

Minority Oversampling Technique) with Naive

Bayes and Logistic Regression, based on particle

swarm optimization, improved software defect

prediction. This study shows that this approach

successfully outperforms previous methods in

terms of performance.

2. Related Research
This research includes several studies that

focus on software defect prediction, input

methods used, results, intermediate

representations, and limitations of each study.

Kaur [18] investigated the prediction of aging-

related software bugs (ARBs) using data from a

bug repository. They developed the

SEARCH_KEYWORD algorithm for ARB

prediction with intermediate representation to

ARB prediction. However, this study has

limitations such as an unbalanced proportion of

ARB-prone and ARB-free files, limited

availability of training data, and limited

comparative analysis to a specific set of

classifiers and datasets.

Yalamanchili [19] deals with software

defect prediction using machine learning based

on historical software defect data. They use

supervised machine learning algorithms (Naïve

Bayes, SVM, ANN) to predict future software

errors. Despite mentioning high accuracy rates,

the study lacks specific metrics, does not

compare with other machine learning

algorithms, and does not address hidden errors

or provide detailed information about software

adaptation or resource utilization

improvements. Yalamanchili focuses on

developing a bug severity prediction model

using word2vec on text descriptions of bug

reports. They use word2vec to embed and

predict bug severity with real-valued vectors as

intermediate representations [19]. However,

this study has limitations, such as time-

consuming hyperparameter tuning,

performance dependence on hyperparameter

configuration, focus on text-based bug reports

and varying performance of classifiers based on

data and word occurrences.

Wang [20] discusses deep semantic feature

learning for software defect prediction using

Deep Belief Network. They extract semantic

features from token vectors derived from

Abstract Syntax Trees (AST) and source code

changes. Unfortunately, the abstract lacks

specific details about the model and data, which

would likely be provided in the full paper.

Turhan and Bener [21] analyzes Naive

Bayes assumptions on software error data, using

publicly available software defect data from

NASA. They preprocessed the data using

Principal Component Analysis (PCA) and applied

various methods to analyze Naive Bayes

assumptions. However, this research is limited

to an analysis of Naive Bayes assumptions on

software defect data from NASA, and the results

may not be generalizable to other data sets or

domains.

In this study, an implementation of the

Naive Bayes method in Python in the Google

Colab environment will be used to analyze bug

predictions in the JM1 dataset. According to Zaidi

[22], attribute weighting in Naive Bayes can help

reduce the impact of prediction failure. It is

suggested that the Naive Bayes algorithm is

Naive Bayes Classification for Software Defect Prediction

Transaction on Informatics and Data Science – Vol. 1(1), 2024 14

effective for software defect prediction. In a

study by Gata [23], the Naive Bayes algorithm

achieved an accuracy of 69.18% and an AUC

value of 0.771, indicating its classification

performance. This implementation aims to

leverage the power of Naive Bayes in software

defect prediction, specifically in the context of the

JM1 dataset, to improve accuracy and predictive

capabilities.

Moreover, Gata [23] compared different

methods for dealing with imbalanced data in

software fault prediction and found that the

Naive Bayes classifier assumes conditional

independence of attributes, which is suitable for

software defect prediction. This highlights the

relevance of Naive Bayes classification in this

context. It is hoped that the results of this

research can become a basis for software

developers to improve software quality and

identify potential problems early. With more

efficient software defect prediction, it can be

hoped that the risk and impact of software

defects can be minimized.

Figure 1
Research design phase

3. Method
This stage is the core of this research and

yields valuable insights into software defect

prediction. This research provides a

comprehensive view of the implementation

from data processing to model testing, as shown

in Figure 1. Each stage in this methodology has

an important role in achieving the research

objectives, namely analyzing software defect

predictions using the Naive Bayes and Linear

Regression methods and measuring the

accuracy of the prediction results.

Data Collection

The data used comes from the JM1-Dataset-

Attributes-Prediction dataset, which involves

software attributes and defect labels. This

dataset provides information regarding

software characteristics, and defect labels

provide information about whether a software

entity has a defect or not. By using this dataset,

software attributes can be analyzed to

understand patterns and relationships that

might influence the possibility of defects in the

software. 4301 entries, 0 to 4300 Data columns

(total 22 columns), as shown in Table 1.

Table 1
Dataset JM1

loc v(g) ev(g) iv(g) n …

11.0 2.0 1.0 2.0 20.0 ….

14.0 2.0 1.0 1.0 21.0 …

10.0 2.0 1.0 2.0 15.0 ….

5.0 1.0 1.0 1.0 11.0

10.0 3.0 3.0 1.0 21.0 ….

.. …. … …. ….

Data Exploration and Visualization

Before applying Naive Bayes classification,

an understanding of the data distribution needs

to be gained. Histograms are used to identify the

distribution pattern of each feature in the JM1

dataset, enabling the determination of the

presence of outliers or uneven distribution that

may impact model performance. To find out the

extent to which each feature correlates with each

other in the JM1 dataset, covariance is used. The

Naive Bayes Classification for Software Defect Prediction

Transaction on Informatics and Data Science – Vol. 1(1), 2024 15

directional relationship between two variables

can be analyzed through covariance. When

negative covariance values are encountered, it

indicates an inverse relationship, while positive

covariance values indicate a tendency for the

features to move together.

The effectiveness of visualization of the

correlation matrix between features in the

dataset is improved using heatmaps. With a

heatmap, the relationship between features can

be seen clearly, giving rise to correlation patterns

that play a role in the feature selection process or

a deeper understanding of the data. The

advantages of the scatter plot method in seeing

the direct relationship between two variables

are explored in the JM1 dataset. Scatter plots

help identify patterns of relationships between

certain pairs of features, facilitating the

determination of linear or non-linear patterns

that may influence prediction results using Naive

Bayes models.

Data Processing

Preliminary data, for example, loc = [11.0,

14.0, 10.0, 5.0, 10.0] to be normalized using Min-

Max Scaling in three steps.

1) Calculate the minimum value (min_loc)

and maximum value (max_loc) from

"loc" feature. min_loc = 5.0 (minimum

value) and max_loc = 14.0 (maximum

value).

2) Normalize each value in the "loc"

feature using formula 1.

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑙𝑜𝑐 =
𝑙𝑜𝑐−min _𝑙𝑜𝑐

max _𝑙𝑜𝑐−min_𝑙𝑜𝑐
 (1)

3) Calculate normalized values for each

data in the feature "loc".

normalized_loc = [(11.0 - 5.0) / (14.0 - 5.0),

(14.0 - 5.0) / (14.0 - 5.0), (10.0 - 5.0) / (14.0 - 5.0),

(5.0 - 5.0) / (14.0 - 5.0), (10.0 - 5.0) / (14.0 - 5.0)]

so, normalized_loc = [0.6, 1.0, 0.5, 0.0, 0.5]

Feature Extraction

Feature extraction from the Software Defect

Prediction Dataset involves an in-depth

understanding and analysis of existing attributes

[1]. This dataset is provided to support the

development of software prediction models that

can be repeated, verified, and improved. In the

context of analysis, feature extraction is an

important initial stage in understanding the

characteristics of the software to be analyzed.

Several main attributes in the dataset and

how to extract features from each attribute.

• loc (McCabe's Line Count of Code): This

attribute measures the number of lines of

code in the software. In feature extraction, it

can be used to measure code complexity by

identifying the number of lines involved in

the software.

• v(g) (McCabe "Cyclomatic Complexity"):

This attribute measures software

complexity based on the McCabe metric. In

feature extraction, this complexity can be

used as an indicator for the level of difficulty

in understanding and managing the

software.

• ev(g) (McCabe "Essential Complexity"):

Essential complexity is a fixed level of

complexity in software. Feature extraction

from these attributes can help in

understanding the core complexity of the

software.

• iv(g) (McCabe "Design Complexity"): This

attribute measures the complexity of

software design. Feature extraction can help

in analyzing the extent to which design

influences software complexity.

• n (Halstead Total Operators + Operands):

This attribute includes the total number of

operators and operands in the software.

Feature extraction from these attributes can

be used to measure the number of entities

involved in the software.

• v (Halstead "Volume"): Halstead volume

measuring software size. In feature

extraction, these attributes can be used to

understand the size of the software being

analyzed.

Naive Bayes Classification for Software Defect Prediction

Transaction on Informatics and Data Science – Vol. 1(1), 2024 16

• (Halstead "Program Length"): Program

length is a measure of software based on the

Halstead metric. Feature extraction from

these attributes can help in identifying code

length.

• d (Halstead "Difficulty"): This attribute

measures the level of difficulty in

understanding the software. Feature

extraction from these attributes can provide

insight into the level of complexity of the

software.

• i (Halstead "Intelligence"): Intelligence in

Halstead's context refers to the level of

"intelligence" of the code. Feature extraction

can help in analyzing the extent to which the

code is considered intelligent.

• e (Halstead "Effort"): This attribute

measures the effort required to develop the

software. Feature extraction from these

attributes can provide an idea of how much

effort is required in development.

Data Normalization (Min-Max Normalization)

The calculation of the Min-Max

normalization process can be illustrated, for

example, using initial data v: [3, 6, 9, 12], b: [15,

18, 21, 24].

Min-Max Normalization for Column v

𝑣𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑣−min(𝑣)

max(𝑣)−min(𝑣)
 (2)

𝑣1 =
3−min(3)

max(12)−min(3)
=

0

9
= 0

𝑣2 =
6−min(3)

max(12)−min(3)
=

3

9
=

1

3

𝑣3 =
9−min(3)

max(12)−min(3)
=

6

9
=

2

3

𝑣1 =
12−min(3)

max(12)−min(3)
=

9

9
= 1

 So, the Min-Max normalization results

for the column 𝑣𝑠𝑐𝑎𝑙𝑒𝑑 = [0,
1

3
,
2

3
, 1].

Then, normalization Min-Max for b

𝑏𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑏−min(𝑏)

max(𝑏)−min(𝑏)
 (3)

𝑏1 =
15−min(15)

max(24)−min(15)
=

0

9
= 0

𝑏2 =
18−min(15)

max(24)−min(15)
=

3

9
=

1

3

𝑏3 =
21−min(15)

max(24)−min(15)
=

6

9
=

2

3

𝑏4 =
24−min(15)

max(24)−min(15)
=

9

9
= 1

So, the Min-Max normalization results for

𝑏𝑠𝑐𝑎𝑙𝑒𝑑 = [0,
1

3
,
2

3
, 1].

Prediction Model Implementation

Next, the training process is carried out

using previously normalized data, including

features v and b, as well as software defect

classification targets which are determined as 0

for no defect and 1 for defect.

Naive Bayes model uses the likelihood and

posterior functions as a formula 4.

𝑃(𝑑𝑒𝑓𝑒𝑐𝑡|𝐷𝑎𝑡𝑎) =
𝑃(𝐷𝑎𝑡𝑎|𝐷𝑒𝑓𝑒𝑐𝑡)∗𝑃(𝐷𝑒𝑓𝑒𝑐𝑡)

𝑃(𝐷𝑎𝑡𝑎)
 (4)

To predict the software defect rate, a Linear

Regression model has been applied. The model

uses additional data on actual defect rates and

features v and b. Linear Regression for defect

prediction uses formula 5.

𝐷𝑒𝑓𝑒𝑐𝑡 = 𝛽0 + 𝛽1 ∗ 𝑣𝑠𝑐𝑎𝑙𝑒𝑑 + 𝛽2 ∗ 𝑏𝑠𝑐𝑎𝑙𝑒𝑑 (5)

Coefficients β0, β1, and β2 in the Linear

Regression model have been determined

through a training process using normalized

data. This model can be used to predict defect

rates based on new data provided.

Model Testing

Suppose the predicted result is �̂� = [8, 12, 18,

22] from the model for the software defect rate

and the actual value y = [10, 15, 20, 25].

MSE is calculated by adding the squared

differences between each prediction and the

actual value and then dividing by the number of

observations.

𝑀𝑆𝐸 =
1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)

2𝑛
𝑖=1 (6)

Naive Bayes Classification for Software Defect Prediction

Transaction on Informatics and Data Science – Vol. 1(1), 2024 17

For the above example, obtain the value of

MSE= 41((8−10)2+(12−15)2+(18−20)2+(22−25)2)

MSE=41(4+9+4+9) = 6.5

Another measurement is RMSE, the square

root of MSE, giving an idea of how big the average

error is.

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)

2𝑛
𝑖=1 (7)

RMSE=6.5≈2.55

4. Result and Analysis
The results of classification with Naïve

Bayes can be visualized with a plot, as shown in

Figure 2.

Figure 2
Plot visualization of LoCK Bug Classification

results

Linear regression results in predicting the

level of software defects, which produces

Intercept and Coef values. The Intercept value is

-0.09359968. This is the value that represents

the point where the regression line intersects the

vertical axis (y-axis) when all independent

variables (x) are zero. In the context of this

model, the Intercept value indicates the starting

point or baseline of the prediction. This means

that if all independent variables are zero, then

the predicted value will be close to -0.09359968.

This is the baseline value before the influence of

other independent variables is considered.

The Coef value is [0.00761893]. This is the

coefficient that connects the independent

variable (x) with the dependent variable (y) in

the regression model. In this context, the

coefficient indicates how much influence a one-

unit increase in the independent variable will

contribute to the prediction of the dependent

variable. With a coefficient value of 0.00761893,

every one-unit increase in the independent

variable will cause an increase of approximately

0.00761893 units in the prediction.

So, these results explain how this regression

model calculates predictions based on a

combination of Intercept and Coef values as well

as the values of the existing independent

variables. The Intercept value is the starting

point, and the Coef is a coefficient that shows the

extent to which each independent variable

influences the final prediction.

5. Discussion
This experiment aims to test various

combinations of the percentage of "True" and

"False" values in the training data and observe

their effect on the accuracy of the model used.

This experiment uses the Naive Bayes (NB)

algorithm as a predictive model.

Table 2
Prediction results and accuracy

Percentage Accuracy
NB

Accuracy

False True RMSE MSE

10% 90% 0.954

0.478

0.228

25% 75% 0.967 0.372

0.138

40% 60% 0.975

0.383

0.147

75% 25% 0.980 0.395 0.198

It can be observed that the composition of

the training data has a significant influence on

accuracy, with some combinations producing

better accuracy than others. The results of this

experiment can be used as a guide in selecting

the most appropriate percentages for training

data in the Naive Bayes model.

In the literature review, it was found that

when evaluating classification algorithms in

software defect prediction, previous studies tend

to use metrics such as accuracy, recall, and F1

score. All three are based on the confusion

matrix shown in Table 3 and 4.

Table 3
Accuracy descriptive statistics for the JM1 data set.

Algorithm Median Standard deviation

K2 0.8062 0.45
Hill Climbing 0.8062 0.45

Naive Bayes Classification for Software Defect Prediction

Transaction on Informatics and Data Science – Vol. 1(1), 2024 18

TAN 0.8069 0.76

Naive Bayes 0.98

0.007367

 Table 4
Accuracy results on the same dataset JM1

Algorithm Best Accuracy

K2 0.8079

Hill Climbing 0.8079
TAN 0.8236

Decision Tree 0.8170

Naive Bayes model 0.98

6. Conclusion

 Based on the results of testing the entire

dataset, it can be concluded that the Naïve Bayes

method produces a classification with an

accuracy of 0.98. For the results of the linear

regression, it was found that this model had an

Intercept value of -0.09359968647139849 and

a Coef coefficient of 0.00761893. The “Intercept”

value represents the starting point or baseline of

the prediction in the context of this model, while

the Coef coefficient shows how much influence

changes in the independent variable have on the

prediction of the dependent variable.

References
[1] A. Hardoni, “Integrasi SMOTE pada Naive Bayes

dan Logistic Regression Berbasis Particle
Swarm Optimization untuk Prediksi Cacat
Perangkat Lunak,” J. Sist. dan Teknol. Inf., vol. 9,
no. 2, p. 144, Apr. 2021, doi:
10.26418/justin.v9i2.43173.

[2] E. Dantas, A. Sousa Neto, M. Perkusich, H.
Almeida, and A. Perkusich, “Using Bayesian
Networks to Support Managing Technological
Risk on Software Projects,” in Anais do I
Workshop Brasileiro de Engenharia de Software
Inteligente (ISE 2021), Sociedade Brasileira de
Computação, Sep. 2021, pp. 1–6. doi:
10.5753/ise.2021.17277.

[3] I. Ancveire, I. Gailite, M. Gailite, and J. Grabis,
“Software Delivery Risk Management:
Application of Bayesian Networks in Agile
Software Development,” Inf. Technol. Manag.
Sci., vol. 18, no. 1, Jan. 2015, doi: 10.1515/itms-
2015-0010.

[4] S. Das, A. Mudgal, A. Dutta, and S. R. Geedipally,
“Vehicle Consumer Complaint Reports
Involving Severe Incidents: Mining Large
Contingency Tables,” Transp. Res. Rec. J. Transp.
Res. Board, vol. 2672, no. 32, pp. 72–82, Dec.
2018, doi: 10.1177/0361198118788464.

[5] B. Assemi, M. Hickman, and A. Paz,
“Relationship between Programmed Heavy
Vehicle Inspections and Traffic Safety,” Transp.
Res. Rec. J. Transp. Res. Board, vol. 2675, no. 10,
pp. 1420–1430, Oct. 2021, doi:
10.1177/03611981211016458.

[6] S. A. Putri, “Prediksi Cacat Software Dengan
Teknik Sampel Dan Seleksi Fitur Pada Bayesian
Network,” J. Kaji. Ilm., vol. 19, no. 1, p. 17, Jan.
2019, doi: 10.31599/jki.v19i1.314.

[7] N. Ichsan, H. Fatah, E. Ermawati, I. Indriyanti,
and T. Wahyuni, “Integrasi Distribution Based
Balance dan Teknik Ensemble Bagging Naive
Bayes Untuk Prediksi Cacat Software,” Media J.
Inform., vol. 14, no. 2, p. 79, Dec. 2022, doi:
10.35194/mji.v14i2.2623.

[8] N. Hidayati, J. Suntoro, and G. G. Setiaji,
“Perbandingan Algoritma Klasifikasi untuk
Prediksi Cacat Software dengan Pendekatan
CRISP-DM,” J. Sains dan Inform., vol. 7, no. 2, pp.
117–126, Nov. 2021, doi:
10.34128/jsi.v7i2.313.

[9] A. Muzaki and A. Witanti, “Sentiment Analysis
of The Community in The Twitter to The 2020
Election in Pandemic Covid-19 By Method
Naive Bayes Classifier,” J. Tek. Inform., vol. 2, no.
2, pp. 101–107, Mar. 2021, doi:
10.20884/1.jutif.2021.2.2.51.

[10] R. Yuliza, “Sistem Pakar Akurasi dalam
Mengidentifikasi Penyakit Gingivitis pada Gigi
Manusia dengan Metode Naive Bayes,” J. Sistim
Inf. dan Teknol., Aug. 2022, doi:
10.37034/jsisfotek.v5i1.157.

[11] K. R. Diska and K. Budayawan, “Sistem
Informasi Prediksi Kelulusan Menggunakan
Metode Naive Bayes Classifer (Studi Kasus:
Prodi Pendidikan Teknik Informatika),” J.
Pendidik. Tambusai, vol. 7, no. 1, pp. 936–943,
Feb. 2023, doi: 10.31004/jptam.v7i1.5375.

[12] D. K. Nurilahi, R. Munadi, S. Syahrial, and A.
BAHRI, “Penerapan Metode Naïve Bayes pada
Honeypot Dionaea dalam Mendeteksi Serangan
Port Scanning,” ELKOMIKA J. Tek. Energi Elektr.
Tek. Telekomun. Tek. Elektron., vol. 10, no. 2, p.
309, Apr. 2022, doi:
10.26760/elkomika.v10i2.309.

[13] W. McKinney, Python for data analysis: Data
wrangling with pandas, NumPy, and IPython,
Second. O’Reilly Media, Inc, 2022.

[14] Warto et al., “Systematic Literature Review on
Named Entity Recognition: Approach, Method,
and Application,” Stat. Optim. Inf. Comput., vol.
12, no. 4, pp. 907–942, Feb. 2024, doi:
10.19139/soic-2310-5070-1631.

[15] Y. Tohma, K. Tokunaga, S. Nagase, and Y.
Murata, “Structural approach to the estimation
of the number of residual software faults based
on the hyper-geometric distribution,” IEEE
Trans. Softw. Eng., vol. 15, no. 3, pp. 345–355,
Mar. 1989, doi: 10.1109/32.21762.

Naive Bayes Classification for Software Defect Prediction

Transaction on Informatics and Data Science – Vol. 1(1), 2024 19

[16] M. D’Ambros, M. Lanza, and R. Robbes, “An
extensive comparison of bug prediction
approaches,” in 2010 7th IEEE Working
Conference on Mining Software Repositories
(MSR 2010), IEEE, May 2010, pp. 31–41. doi:
10.1109/MSR.2010.5463279.

[17] N. P. Gargote, S. Devaraj, and S. Shahapure,
“Human Perception Based Color Image
Segmentation,” Comput. Eng. Appl. J., vol. 2, no.
3, pp. 283–294, 2013, doi:
10.18495/comengapp.v2i3.34.

[18] H. Kaur and A. Kaur, “An empirical study of
Aging Related Bug prediction using Cross
Project in Cloud Oriented Software,”
Informatica, vol. 46, no. 8, Nov. 2022, doi:
10.31449/inf.v46i8.4197.

[19] P. L. S. T. Sangeetha Yalamanchili, “Software
Defect Prediction Using Machine Learning,” Int.
J. Recent Technol. Eng., vol. 8, no. 2S11, pp.
1053–1057, Nov. 2019, doi:
10.35940/ijrte.B1178.0982S1119.

[20] S. Wang, T. Liu, J. Nam, and L. Tan, “Deep
Semantic Feature Learning for Software Defect
Prediction,” IEEE Trans. Softw. Eng., vol. 46, no.
12, pp. 1267–1293, Dec. 2020, doi:
10.1109/TSE.2018.2877612.

[21] B. Turhan and A. Bener, “Analysis of Naive
Bayes’ assumptions on software fault data: An
empirical study,” Data Knowl. Eng., vol. 68, no.
2, pp. 278–290, Feb. 2009, doi:
10.1016/j.datak.2008.10.005.

[22] N. A. Zaidi, J. Cerquides, M. J. Carman, and G. I.
Webb, “Alleviating Naive Bayes Attribute
Independence Assumption by Attribute
Weighting,” J. Mach. Learn. Res., vol. 14, no. 24,
pp. 1947–1988, 2013.

[23] W. Gata et al., “Algorithm Implementations
Naïve Bayes, Random Forest. C4.5 on Online
Gaming for Learning Achievement
Predictions,” in Proceedings of the 2nd
International Conference on Research of
Educational Administration and Management
(ICREAM 2018), Paris, France: Atlantis Press,
2019. doi: 10.2991/icream-18.2019.1.

Naive Bayes Classification for Software Defect Prediction

Transaction on Informatics and Data Science – Vol. 1(1), 2024 20

This page is intentionally left blank.

