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Abstract 

Software defects are an inevitable aspect of software development, exerting substantial 
influence on the reliability and performance of software applications. This research addresses 
the imperative need to enhance the prediction and monitoring of software defects within the 
software development domain. With a focus on system stability and the prevention of 
software malfunctions, this study underscores the significance of proactive measures, 
including robust software testing, routine maintenance, and continuous system monitoring. 
The central challenge addressed in this research pertains to the insufficient efficiency of 
predicting software defects during the development phase. To address this challenge, the 
study employs the Naive Bayes classification method. Test results conducted on the complete 
dataset reveal that the Naive Bayes method yields classifications with an exceptionally high 
accuracy rate, reaching 98%. These findings suggest that the method holds great potential as 
an effective tool for predicting and preventing software defects throughout the software 
development process. Additionally, through linear regression analysis, the model exhibits an 
intercept value of -0.09359968 and a coef coefficient of 0.00761893. The outcomes of this 
research bear significant implications for the implementation of the Naive Bayes method in 
software bug prediction analysis, particularly in the utilization of the Python programming 
language with the assistance of Google Colab. The adoption of this method can play a pivotal 
role in mitigating risks and elevating the overall quality of software during the developmental 
stages. 
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1. Introduction 

In an era of rapidly developing technology, 

software defect prediction has become a crucial 

step in identifying and mitigating potential 

problems in software development. One 

approach that has been analyzed in depth is the 

application of Naive Bayes classification to 

improve software defect predictions [1]. 

 The main problem to be resolved in this 

research is the lack of efficient predictions 

related to software defects in software 

development. Continuous monitoring and risk 

management are important aspects of software 

development and maintenance. Effective risk 

management involves early identification and 
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analysis of risks, implementation of corrective 

actions, continuous monitoring, and 

reassessment [2]. This process is important for 

reducing unexpected defects and system 

crashes, ensuring data integrity, and improving 

user experience and application reliability  [3]. 

Continuous monitoring is critical to identifying 

major vehicle defects and reducing accidents 

resulting from vehicle-related impairments. [4]. 

It also plays an important role in improving the 

safety of heavy vehicles by reducing defect-

related accidents through inspections and 

maintenance programs [5].   

 In the field of risk management, the use 

of Bayesian Networks has been proposed to 
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support decision making in various software 

designs, contributing to the effective 

management of technological risks in software 

projects [2]. This shows the importance of 

leveraging advanced techniques and 

methodologies to address risks in development 

and maintenance.  

 The Naive Bayes classification method 

has been widely used in various fields, including 

software error prediction, sentiment analysis, 

and disease prediction. In the field of software 

error prediction, researchers have applied the 

Naive Bayes classifier to predict software errors 

using techniques such as sampling and feature 

selection [6], integration of distribution-based 

balance and ensemble bagging [7], and 

comparison with other classification algorithms. 

[8]. This study has demonstrated the 

effectiveness of the Naive Bayes classifier in 

predicting software defects. In the field of 

feelings analysis, the Naive Bayes classifier has 

been used to analyze people's feelings on social 

media platforms such as Twitter [9]. It has been 

applied to analyze sentiment during the 2020 

election in the context of the COVID-19 

pandemic. The results of this study demonstrate 

the applicability of the Naive Bayes classifier in 

sentiment analysis tasks. In addition, the Naive 

Bayes classifier has also been used in disease 

prediction. For example, in the healthcare field, 

Naive Bayes classifiers have been used to 

identify diseases such as tuberculosis [5] and 

gingivitis [10]. This study highlights the accuracy 

and effectiveness of the Naive Bayes classifier in 

disease prediction. 

 In addition, the Naive Bayes classifier has 

been applied in other fields, such as predicting 

student graduation [11] and detecting network 

attacks [12]. This study shows the versatility of 

the Naive Bayes classifier in a variety of 

prediction tasks. In conclusion, Naive Bayes 

classifier is a widely used method for prediction 

tasks in various domains. Its effectiveness has 

been demonstrated in software error prediction, 

sentiment analysis, disease prediction, and other 

fields. 

Naive Bayes method is an attractive choice 

because of its simplicity. Although the 

assumption that the attributes are independent 

("naive" assumption) may not always hold in 

real contexts, this method often provides good 

results in classification problems, including 

software defect prediction. Muzaki and Witanti 

[9] argue that Naive Bayes (NB) is a good for 

classification. NB uses probability theory as its 

theoretical basis and has a high level of speed 

and accuracy when applied to large databases. 

NB can determine the class of data during 

classification by testing all labels on the data 

using Bayes' theorem. The class that has the 

highest probability value becomes the prediction 

from the method. 

Python programming language was chosen 

as a platform for implementing the Naive Bayes 

method in this research because Python 

provides a variety of powerful libraries for data 

analysis and machine learning. A relevant paper 

reference in the context of using Python for data 

analysis and machine learning is "Python for 

Data Analysis" by Wes McKinney [13]. Python 

also has effective visualization tools such as 

Matplotlib and Seaborn to visualize data analysis 

results. Python implementation involves steps 

such as reading the dataset, processing the data, 

training the model, and evaluating the 

performance of the model. Data analysis is an 

important stage in this research, and the Python 

method makes it easy to read data, clean it, delete 

irrelevant data, and explore data to identify 

patterns or relationships between software 

attributes and the presence of defects [13]. 

Evaluation of the performance of device defect 

prediction models’ software is the final stage in 

this research [14], which is suitable for 

measuring classification tasks. Performance 

metrics such as accuracy, precision, and recall 

will be used to evaluate the model. 

The evaluation results support 

understanding the extent to which Naive Bayes 

models are effective in predicting software 

defects. Supervision-based machine learning is 

used to evaluate machine learning capabilities in 
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Device Behavior Prediction (SBP). This study 

discusses Naïve Bayes (NB) classifiers. The 

discussed machine learning classifiers were 

applied to three different datasets obtained from 

the book [15], Previous researchers have 

developed and applied various bug prediction 

approaches that differ in terms of accuracy, 

complexity, and input data that is needed but has 

not achieved the desired results [16]. 

Software defect prediction is important 

because it allows software developers to allocate 

available resources to create high-quality 

software products that can help in every 

company's business processes [17]. By 

predicting module defects early, developers can 

identify potential problems early and allocate 

resources appropriately. The use of Naive Bayes 

classification in software defect prediction has 

been proven to be effective. In a study by 

Hardoni [1] the integration of SMOTE (Synthetic 

Minority Oversampling Technique) with Naive 

Bayes and Logistic Regression, based on particle 

swarm optimization, improved software defect 

prediction. This study shows that this approach 

successfully outperforms previous methods in 

terms of performance. 

2. Related Research 
This research includes several studies that 

focus on software defect prediction, input 

methods used, results, intermediate 

representations, and limitations of each study. 

Kaur [18] investigated the prediction of aging-

related software bugs (ARBs) using data from a 

bug repository. They developed the 

SEARCH_KEYWORD algorithm for ARB 

prediction with intermediate representation to 

ARB prediction. However, this study has 

limitations such as an unbalanced proportion of 

ARB-prone and ARB-free files, limited 

availability of training data, and limited 

comparative analysis to a specific set of 

classifiers and datasets. 

Yalamanchili [19] deals with software 

defect prediction using machine learning based 

on historical software defect data. They use 

supervised machine learning algorithms (Naïve 

Bayes, SVM, ANN) to predict future software 

errors. Despite mentioning high accuracy rates, 

the study lacks specific metrics, does not 

compare with other machine learning 

algorithms, and does not address hidden errors 

or provide detailed information about software 

adaptation or resource utilization 

improvements. Yalamanchili focuses on 

developing a bug severity prediction model 

using word2vec on text descriptions of bug 

reports. They use word2vec to embed and 

predict bug severity with real-valued vectors as 

intermediate representations [19]. However, 

this study has limitations, such as time-

consuming hyperparameter tuning, 

performance dependence on hyperparameter 

configuration, focus on text-based bug reports 

and varying performance of classifiers based on 

data and word occurrences. 

Wang [20] discusses deep semantic feature 

learning for software defect prediction using 

Deep Belief Network. They extract semantic 

features from token vectors derived from 

Abstract Syntax Trees (AST) and source code 

changes. Unfortunately, the abstract lacks 

specific details about the model and data, which 

would likely be provided in the full paper. 

Turhan and Bener [21] analyzes Naive 

Bayes assumptions on software error data, using 

publicly available software defect data from 

NASA. They preprocessed the data using 

Principal Component Analysis (PCA) and applied 

various methods to analyze Naive Bayes 

assumptions. However, this research is limited 

to an analysis of Naive Bayes assumptions on 

software defect data from NASA, and the results 

may not be generalizable to other data sets or 

domains. 

In this study, an implementation of the 

Naive Bayes method in Python in the Google 

Colab environment will be used to analyze bug 

predictions in the JM1 dataset. According to Zaidi 

[22], attribute weighting in Naive Bayes can help 

reduce the impact of prediction failure. It is 

suggested that the Naive Bayes algorithm is 
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effective for software defect prediction. In a 

study by Gata [23], the Naive Bayes algorithm 

achieved an accuracy of 69.18% and an AUC 

value of 0.771, indicating its classification 

performance. This implementation aims to 

leverage the power of Naive Bayes in software 

defect prediction, specifically in the context of the 

JM1 dataset, to improve accuracy and predictive 

capabilities. 

Moreover, Gata [23] compared different 

methods for dealing with imbalanced data in 

software fault prediction and found that the 

Naive Bayes classifier assumes conditional 

independence of attributes, which is suitable for 

software defect prediction. This highlights the 

relevance of Naive Bayes classification in this 

context. It is hoped that the results of this 

research can become a basis for software 

developers to improve software quality and 

identify potential problems early. With more 

efficient software defect prediction, it can be 

hoped that the risk and impact of software 

defects can be minimized. 

Figure 1 
Research design phase 

 

 

3. Method 
This stage is the core of this research and 

yields valuable insights into software defect 

prediction. This research provides a 

comprehensive view of the implementation 

from data processing to model testing, as shown 

in Figure 1. Each stage in this methodology has 

an important role in achieving the research 

objectives, namely analyzing software defect 

predictions using the Naive Bayes and Linear 

Regression methods and measuring the 

accuracy of the prediction results. 

Data Collection 

The data used comes from the JM1-Dataset-

Attributes-Prediction dataset, which involves 

software attributes and defect labels. This 

dataset provides information regarding 

software characteristics, and defect labels 

provide information about whether a software 

entity has a defect or not. By using this dataset, 

software attributes can be analyzed to 

understand patterns and relationships that 

might influence the possibility of defects in the 

software. 4301 entries, 0 to 4300 Data columns 

(total 22 columns), as shown in Table 1. 

Table 1 
Dataset JM1 

loc v(g) ev(g) iv(g) n … 

11.0 2.0 1.0 2.0 20.0 …. 

14.0 2.0 1.0 1.0 21.0 … 

10.0 2.0 1.0 2.0 15.0 …. 

5.0 1.0 1.0 1.0 11.0  

10.0 3.0 3.0 1.0 21.0 …. 

.. …. … …. ….  

Data Exploration and Visualization 

Before applying Naive Bayes classification, 

an understanding of the data distribution needs 

to be gained. Histograms are used to identify the 

distribution pattern of each feature in the JM1 

dataset, enabling the determination of the 

presence of outliers or uneven distribution that 

may impact model performance. To find out the 

extent to which each feature correlates with each 

other in the JM1 dataset, covariance is used. The 
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directional relationship between two variables 

can be analyzed through covariance. When 

negative covariance values are encountered, it 

indicates an inverse relationship, while positive 

covariance values indicate a tendency for the 

features to move together. 

The effectiveness of visualization of the 

correlation matrix between features in the 

dataset is improved using heatmaps. With a 

heatmap, the relationship between features can 

be seen clearly, giving rise to correlation patterns 

that play a role in the feature selection process or 

a deeper understanding of the data. The 

advantages of the scatter plot method in seeing 

the direct relationship between two variables 

are explored in the JM1 dataset. Scatter plots 

help identify patterns of relationships between 

certain pairs of features, facilitating the 

determination of linear or non-linear patterns 

that may influence prediction results using Naive 

Bayes models. 

Data Processing 

Preliminary data, for example, loc = [11.0, 

14.0, 10.0, 5.0, 10.0] to be normalized using Min-

Max Scaling in three steps.  

1) Calculate the minimum value (min_loc) 

and maximum value (max_loc) from 

"loc" feature. min_loc = 5.0 (minimum 

value) and max_loc = 14.0 (maximum 

value). 

2) Normalize each value in the "loc" 

feature using formula 1. 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑙𝑜𝑐 =
𝑙𝑜𝑐−min _𝑙𝑜𝑐

max _𝑙𝑜𝑐−min_𝑙𝑜𝑐
  (1) 

3) Calculate normalized values for each 

data in the feature "loc".  

normalized_loc = [(11.0 - 5.0) / (14.0 - 5.0), 

(14.0 - 5.0) / (14.0 - 5.0), (10.0 - 5.0) / (14.0 - 5.0), 

(5.0 - 5.0) / (14.0 - 5.0), (10.0 - 5.0) / (14.0 - 5.0)] 

so, normalized_loc = [0.6, 1.0, 0.5, 0.0, 0.5] 

Feature Extraction 

Feature extraction from the Software Defect 

Prediction Dataset involves an in-depth 

understanding and analysis of existing attributes 

[1]. This dataset is provided to support the 

development of software prediction models that 

can be repeated, verified, and improved. In the 

context of analysis, feature extraction is an 

important initial stage in understanding the 

characteristics of the software to be analyzed. 

Several main attributes in the dataset and 

how to extract features from each attribute. 

• loc (McCabe's Line Count of Code): This 

attribute measures the number of lines of 

code in the software. In feature extraction, it 

can be used to measure code complexity by 

identifying the number of lines involved in 

the software. 

• v(g) (McCabe "Cyclomatic Complexity"): 

This attribute measures software 

complexity based on the McCabe metric. In 

feature extraction, this complexity can be 

used as an indicator for the level of difficulty 

in understanding and managing the 

software. 

• ev(g) (McCabe "Essential Complexity"): 

Essential complexity is a fixed level of 

complexity in software. Feature extraction 

from these attributes can help in 

understanding the core complexity of the 

software. 

• iv(g) (McCabe "Design Complexity"): This 

attribute measures the complexity of 

software design. Feature extraction can help 

in analyzing the extent to which design 

influences software complexity. 

• n (Halstead Total Operators + Operands): 

This attribute includes the total number of 

operators and operands in the software. 

Feature extraction from these attributes can 

be used to measure the number of entities 

involved in the software. 

• v (Halstead "Volume"): Halstead volume 

measuring software size. In feature 

extraction, these attributes can be used to 

understand the size of the software being 

analyzed. 
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• (Halstead "Program Length"): Program 

length is a measure of software based on the 

Halstead metric. Feature extraction from 

these attributes can help in identifying code 

length. 

• d (Halstead "Difficulty"): This attribute 

measures the level of difficulty in 

understanding the software. Feature 

extraction from these attributes can provide 

insight into the level of complexity of the 

software. 

• i (Halstead "Intelligence"): Intelligence in 

Halstead's context refers to the level of 

"intelligence" of the code. Feature extraction 

can help in analyzing the extent to which the 

code is considered intelligent. 

• e (Halstead "Effort"): This attribute 

measures the effort required to develop the 

software. Feature extraction from these 

attributes can provide an idea of how much 

effort is required in development. 

Data Normalization (Min-Max Normalization) 

The calculation of the Min-Max 

normalization process can be illustrated, for 

example, using initial data v: [3, 6, 9, 12], b: [15, 

18, 21, 24].  

Min-Max Normalization for Column v 

𝑣𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑣−min(𝑣)

max(𝑣)−min(𝑣)
      (2) 

𝑣1 =
3−min(3)

max(12)−min(3)
=

0

9
= 0  

𝑣2 =
6−min(3)

max(12)−min(3)
=

3

9
=

1

3
  

𝑣3 =
9−min(3)

max(12)−min(3)
=

6

9
=

2

3
  

𝑣1 =
12−min(3)

max(12)−min(3)
=

9

9
= 1  

 So, the Min-Max normalization results 

for the column 𝑣𝑠𝑐𝑎𝑙𝑒𝑑 = [0,
1

3
,
2

3
, 1]. 

Then, normalization Min-Max for b 

𝑏𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑏−min(𝑏)

max(𝑏)−min(𝑏)
      (3) 

𝑏1 =
15−min(15)

max(24)−min(15)
=

0

9
= 0  

𝑏2 =
18−min(15)

max(24)−min(15)
=

3

9
=

1

3
  

𝑏3 =
21−min(15)

max(24)−min(15)
=

6

9
=

2

3
  

𝑏4 =
24−min(15)

max(24)−min(15)
=

9

9
= 1  

So, the Min-Max normalization results for 

𝑏𝑠𝑐𝑎𝑙𝑒𝑑 = [0,
1

3
,
2

3
, 1]. 

Prediction Model Implementation 

Next, the training process is carried out 

using previously normalized data, including 

features v and b, as well as software defect 

classification targets which are determined as 0 

for no defect and 1 for defect. 

Naive Bayes model uses the likelihood and 

posterior functions as a formula 4. 

𝑃(𝑑𝑒𝑓𝑒𝑐𝑡|𝐷𝑎𝑡𝑎) =
𝑃(𝐷𝑎𝑡𝑎|𝐷𝑒𝑓𝑒𝑐𝑡)∗𝑃(𝐷𝑒𝑓𝑒𝑐𝑡)

𝑃(𝐷𝑎𝑡𝑎)
     (4) 

To predict the software defect rate, a Linear 

Regression model has been applied. The model 

uses additional data on actual defect rates and 

features v and b. Linear Regression for defect 

prediction uses formula 5. 

𝐷𝑒𝑓𝑒𝑐𝑡 = 𝛽0 + 𝛽1 ∗ 𝑣𝑠𝑐𝑎𝑙𝑒𝑑 + 𝛽2 ∗ 𝑏𝑠𝑐𝑎𝑙𝑒𝑑     (5) 

Coefficients β0, β1, and β2 in the Linear 

Regression model have been determined 

through a training process using normalized 

data. This model can be used to predict defect 

rates based on new data provided. 

Model Testing 

Suppose the predicted result is �̂� = [8, 12, 18, 

22] from the model for the software defect rate 

and the actual value y = [10, 15, 20, 25]. 

MSE is calculated by adding the squared 

differences between each prediction and the 

actual value and then dividing by the number of 

observations. 

𝑀𝑆𝐸 =
1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)

2𝑛
𝑖=1      (6) 
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For the above example, obtain the value of 

MSE= 41((8−10)2+(12−15)2+(18−20)2+(22−25)2) 

MSE=41(4+9+4+9) = 6.5 

Another measurement is RMSE, the square 

root of MSE, giving an idea of how big the average 

error is. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)

2𝑛
𝑖=1      (7) 

RMSE=6.5≈2.55 

4. Result and Analysis 
The results of classification with Naïve 

Bayes can be visualized with a plot, as shown in 

Figure 2. 

Figure 2 
Plot visualization of LoCK Bug Classification 

results 

 

Linear regression results in predicting the 

level of software defects, which produces 

Intercept and Coef values. The Intercept value is 

-0.09359968. This is the value that represents 

the point where the regression line intersects the 

vertical axis (y-axis) when all independent 

variables (x) are zero. In the context of this 

model, the Intercept value indicates the starting 

point or baseline of the prediction. This means 

that if all independent variables are zero, then 

the predicted value will be close to -0.09359968. 

This is the baseline value before the influence of 

other independent variables is considered. 

The Coef value is [0.00761893]. This is the 

coefficient that connects the independent 

variable (x) with the dependent variable (y) in 

the regression model. In this context, the 

coefficient indicates how much influence a one-

unit increase in the independent variable will 

contribute to the prediction of the dependent 

variable. With a coefficient value of 0.00761893, 

every one-unit increase in the independent 

variable will cause an increase of approximately 

0.00761893 units in the prediction. 

So, these results explain how this regression 

model calculates predictions based on a 

combination of Intercept and Coef values as well 

as the values of the existing independent 

variables. The Intercept value is the starting 

point, and the Coef is a coefficient that shows the 

extent to which each independent variable 

influences the final prediction. 

5. Discussion 
This experiment aims to test various 

combinations of the percentage of "True" and 

"False" values in the training data and observe 

their effect on the accuracy of the model used. 

This experiment uses the Naive Bayes (NB) 

algorithm as a predictive model. 

Table 2 
Prediction results and accuracy 

Percentage Accuracy 
NB 

Accuracy 

False True RMSE MSE 

10% 90% 0.954 
 

0.478 
 

0.228 
 

25% 75% 0.967 0.372 
 

0.138 

40% 60% 0.975 
 

0.383 
 

0.147 
 

75% 25% 0.980 0.395 0.198 

It can be observed that the composition of 

the training data has a significant influence on 

accuracy, with some combinations producing 

better accuracy than others. The results of this 

experiment can be used as a guide in selecting 

the most appropriate percentages for training 

data in the Naive Bayes model. 

In the literature review, it was found that 

when evaluating classification algorithms in 

software defect prediction, previous studies tend 

to use metrics such as accuracy, recall, and F1 

score. All three are based on the confusion 

matrix shown in Table 3 and 4. 

Table 3  
Accuracy descriptive statistics for the JM1 data set. 

Algorithm Median Standard deviation 

K2 0.8062 0.45 
Hill Climbing 0.8062 0.45 
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TAN 0.8069 0.76 

Naive Bayes 0.98 
 

0.007367 
 

  Table 4  
Accuracy results on the same dataset JM1 

Algorithm Best Accuracy 

K2 0.8079 

Hill Climbing 0.8079 
TAN 0.8236 

Decision Tree 0.8170 

Naive Bayes model 0.98 
 

6. Conclusion   

 Based on the results of testing the entire 

dataset, it can be concluded that the Naïve Bayes 

method produces a classification with an 

accuracy of 0.98. For the results of the linear 

regression, it was found that this model had an 

Intercept value of -0.09359968647139849 and 

a Coef coefficient of 0.00761893. The “Intercept” 

value represents the starting point or baseline of 

the prediction in the context of this model, while 

the Coef coefficient shows how much influence 

changes in the independent variable have on the 

prediction of the dependent variable. 
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